Hydroxyurea

Hydroxyurea is indicated for the treatment of certain malignancies and sickle cell anemia, and has been used investigationally for the treatment of HIV. Its potential safety and effectiveness for treatment of HIV have not been established, and clinicians should be aware of important safety precautions regarding its use. Hydroxyurea does not have direct antiretroviral activity; rather, it inhibits the cellular enzyme ribonucleotide reductase, resulting in reduced intracellular levels of deoxynucleoside triphosphates (dNTPs) that are necessary for DNA synthesis [1]. Hydroxyurea preferentially depletes intracellular dATP; therefore, antiretroviral activity and/or toxicity of adenosine analogues, such as ddI, may potentially be enhanced in combination with hydroxyurea. Hydroxyurea also induces the activity of cellular kinases that phosphorylate nucleoside analogue reverse transcriptase inhibitors, potentially further enhancing their antiretroviral activity and/or toxicity.

There have been no data from controlled clinical trials that convincingly support the benefit of hydroxyurea as an adjunct in the treatment of HIV infection. In limited studies, the addition of hydroxyurea to a regimen of ddI +d4T or ddI alone appeared to result in moderately enhanced antiretroviral activity [2-4], although the optimal dosage and dosing schedule were not determined. In contrast, in ACTG 5025, a randomized, controlled clinical trial conducted in subjects on potent antiretroviral therapy with levels of plasma viremia <200 copies/mL [5], no statistically significant differences in viral load suppression were observed in patients receiving hydroxyurea 600 mg twice daily in combination with ddI+d4T+indinavir compared to those receiving the combination regimen without hydroxyurea. Additionally, a substantial decrease in median CD4⁺ T cell count was observed in the hydroxyurea treatment group. Observations of blunted or reduced CD4 responses were also reported by other investigators [6-8]. Importantly, the ACTG 5025 trial was prematurely terminated due to higher rates of drug toxicity in patients randomized to the hydroxyureacontaining arm. Among 68 patients randomized to hydroxyurea, three deaths related to complications of pancreatitis were reported. The increased frequency of fatal pancreatitis in the hydroxyurea-containing arm was not statistically significant and had not been reported previously. These cases of fatal pancreatitis do, however, raise the question of whether hydroxyurea in combination with ddI+d4T may increase the risk of ddI-associated pancreatitis.

Additional concerns regarding the use of hydroxyurea in HIV infection have been raised in this trial and other studies, and include an increased risk of persistent cytopenias [9] and hepatotoxicity [10], the drug's teratogenic properties (FDA Pregnancy Category D), and an increased risk of neuropathy [11, 12].

In summary, the current clinical trial data have not demonstrated virological and immunological benefit of hydroxyurea as adjunctive therapy to antiretroviral regimens when compared to antiretroviral therapy alone, and hydroxyurea should generally not be offered. (DII) Clinicians considering the use of hydroxyurea in a treatment regimen for HIV should be aware of the limited and conflicting nature of data in support of its efficacy, and the importance of monitoring patients closely for potentially serious toxicity.

References

- Meyerhans A, Vartanian JP, Hultgren C, et al. Restriction and enhancement of human immunodeficiency virus type 1 replication by modulation of intracellular deoxynucleoside triphosphate pools. *J Virol*, 1994. 68(1):535-40.
- Montaner JS, Zala C, Conway B, et al. A pilot study of hydroxyurea among patients with advanced human immunodeficiency virus (HIV) disease receiving chronic didanosine therapy: Canadian HIV trials network protocol 080. *J Infect Dis*, 1997. 175(4):801-6.
- 3. Gao WY, Cara A, Gallo RC, Lori F. Low levels of deoxynucleotides in peripheral blood lymphocytes: A strategy to inhibit human immunodeficiency virus type 1 replication. *Proc Natl Acad Sci U S A*, 1993. 90(19):8925-8.
- 4. Federici ME, Lupo S, Cahn P, et al. Hydroxyurea in combination regimens for the treatment of antiretroviral-naive HIV-infected adults. 12th World AIDS Conference. Geneva, 1998. (Abstract 12235).
- 5. Havlir DV, Gilbert PB, Bennett K, et al. Effects of treatment intensification with hydroxyurea in HIV-infected patients with virologic suppression. *AIDS*, 2001. 15(11):1379-88.
- 6. Barreiro P, de Mendoza C, Soriano V, et al. Hydroxyurea plus didanosine as maintenance therapy after 1 year on highly active antiretroviral therapy. *AIDS*, 2000. 14(2):207-8.
- 7. Hellinger JA, Iwane MK, Smith JJ, et al. A randomized study of the safety and antiretroviral activity of hydroxyurea combined with didanosine in

- persons infected with human immunodeficiency virus type 1. American Foundation for AIDS Research Community-Based Clinical Trials Network. *J Infect Dis*, 2000. 181(2):540-7.
- 8. Rutschmann OT, Vernazza PL, Bucher HC, et al. Long-term hydroxyurea in combination with didanosine and stavudine for the treatment of HIV-1 infection. Swiss HIV Cohort Study. AIDS, 2000. 14(14):2145-51.
- **9.** Goodrich J, Khardori N. Hydroxyurea toxicity in human immunodeficiency virus-positive patients. *Clin Infect Dis*, 1999. 29(3):692-3.
- 10. Weissman SB, Sinclair GI, Green CL, Fissell WH. Hydroxyurea-induced hepatitis in human immunodeficiency virus-positive patients. *Clin Infect Dis*, 1999. 29(1):223-4.
- 11. Moore RD, Wong WM, Keruly JC, McArthur JC. Incidence of neuropathy in HIV-infected patients on monotherapy versus those on combination therapy with didanosine, stavudine and hydroxyurea. *AIDS*, 2000. 14(3):273-8.
- 12. Cepeda JA, Wilks D. Excess peripheral neuropathy in patients treated with hydroxyurea plus didanosine and stavudine for HIV infection. *AIDS*, 2000. 14(3):332-3.